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‘Inactive’ motion and pressure fluctuations in 
turbulent boundary layers 

By P. BRADSHAW 
Aerodynamics Division, National Physical Laboratory, Teddington 

(Received 25 February 1967) 

Townsend’s (1961) hypothesis that the turbulent motion in the inner region of a 
boundary layer consists of (i) an ‘active’ part which produces the shear stress 7 

and whose statistical properties are universal functions of 7 and y, and (ii) an 
‘inactive ’ and effectively irrotational part determined by the turbulence in the 
outer layer, is supported in the present paper by measurements of frequency 
spectra in a strongly retarded boundary layer, in which the ‘inactive’ motion is 
particularly intense. The only noticeable effect of the inactive motion is an in- 
creased dissipation of kinetic energy into heat in the viscous sublayer, supplied 
by turbulent energy diffusion from the outer layer towards the surface. The 
required diffusion is of the right order of magnitude to explain the non-universal 
values of the triple products measured near the surface, which can therefore be 
reconciled with universality of the ‘active ’ motion. 

Dimensional analysis shows that the contribution of the ‘active’ inner layer 
motion to the one-dimensional wave-number spectrum of the surface pressure 
fluctuations varies as 7;/kl up to a wave-number inversely proportional to the 
thickness of the viscous sublayer. This result is strongly supported by the recent 
measurements of Hodgson (1967), made with a much smaller ratio of microphone 
diameter to boundary-layer thickness than has been achieved previously. The 
disagreement of the result with most other measurements is attributed to in- 
adequate transducer resolution in the other experiments. 

1. Introduction 
The pressure fluctuation at  a point in or near a turbulent flow is determined by 

a volume integral over the whole turbulent region, and irrotational velocity 
fluctuations will be induced both outside the turbulent region (where they are 
easy to identify (Phillips 1955; Bradshaw 1967b)) and inside it (where they are 
superimposed on the vorticity field). The general theory of decomposition of a 
turbulent flow into separate but interacting modes is given by Chu & Kovasznay 
(1958), but quantitative discussion cannot be carried very far unless the length 
scale of the irrotational field is locally much larger than the length scale of the 
vorticity field so that the latter is passively convected by the former. However, 
with this proviso about length scales even two vorticity fields would not interact, 
because of the independence of Fourier components for distant wave-numbers 
(Batchelor 1953, p. log), so that the larger-scale vorticity field could be regarded 
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as irrotational when discussing the smaller, providing that the dissipation rate 
in the large-scale field was negligible.? 

In  the present paper it is shown that the turbulent motion in the inner layer of 
a turbulent wall flow (y/6 < 0-2, say) can be divided into two essentially in- 
dependent parts, respectively the vorticity field of the inner layer proper and a 
larger-scale ‘inactive’ motion arising in the outer layer: this latter motion is 
partly the true irrotational field associated with pressure fluctuations generated 
in the outer layer, and partly the large-scale vorticity field of the outer-layer 
turbulence which the inner layer sees as an unsteady external stream. The vor- 
ticity field of the inner layer proper is universal, with velocity scale (r/p)$ and 
length scale y. 

Measurements of pressure fluctuations at the surface can be used to derive 
some useful information about the irrotational fluctuations within the turbulent 
flow and are also of practical importance because of structural excitation and 
consequent noise radiation. In  this paper, measurements of surface pressure 
fluctuations below a strongly-retarded equilibrium boundary layer (Bradshaw 
1967c) are presented and used in the discussion of the inner-layer turbulence 
mentioned in the last paragraph. In  turn, the clarification of our ideas about the 
universality of the inner-layer turbulence is used to derive a universal form for 
the high-wave-number part of the pressure-fluctuation spectrum. 

The immediate practical application of this work is to the development of a 
method of calculating boundary-layer development by transforming the tur- 
bulent kinetic energy equation into an equation for shear stress (Bradshaw, Ferriss 
& Atwell 1967). The transformation is more straightforward and more convincing 
when the behaviour of the inactive motion is taken into account, because it is 
possible to treat the energy equations for the active and inactive motions 
separately-or in practice to ignore the latter altogether-so that the universal 
features of the shear-stress-producing turbulence are not obscured by the inactive 
motion near the surface or the irrotational field a t  the edge of the boundary layer. 

‘Inactive’ motion will also occur in the inner layer of the Earth’s boundary 
layer, so that the low-wave-number spectra will depend on the turbulence at 
altitude as well as on the surface shear stress and heat flux: this may explain some 
of the scatter between different spectra measured with nominally identical sur- 
face conditions. 

2. Motion in the inner layer 
Near the surface but outside the viscous sublayer, the only important length 

scale is y (normal distance from the wall), and the only important velocity scale 
is u, = (r,/p)%, or, as a better approximation taking account of the variation of 
shear stress with y, (r/p)*. Thus, immediately, aU/ay = ( r /p)* /Ky, where K is von 
KBrm&n’s constant, 0.40 approximately, and moreover $(k,) = (7/p) yf(k, y) 
where $(lcl) is the wave-number spectral density of any fluctuating velocity and 
k, is the component of the wave-number vector k in the flow direction (x). 

although tho velocity fluctuations are of the same order in the two cases. 
t For instance, the aircraft designer usually ignores the meteorologist’s vorticity field, 



_./*-. -.-- 
1.0 +- 

-. -- 

s 0 5  /' 

t - 
L 

1.0 

YP99, 

FIGTJRE 2. Shear stress profile at x = 53 in. U,CC z : - - O . * ~ ~ .  

without supposing that the motion at any point consists of two components, an 
active component responsible for turbulent transfer and determined by the stress 
distribution, and an inactive component which does not transfer momentum or 
interact with the universal component ' (indeed, the only other course would be 
to believe that the scales of the mean motion were universal but that the scales 
of the shear-stress-producing turbdence were not-a sentiment open to doubt). 
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FIGURE 3a.  Inner-layer frequency spectra 
at x = 83 in., u component. 

WY/U 
FIGURE 3 b. Inner-layer frequency spectra 

at x = 83 in., v component. 
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FIGURE 3 c. Inner-layer frequency spectra 
at x = 83 in., w component. 
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FIGURE 3 d. Inner-layer frequency spectra 
at z = 83 in., uw. 
y/S,,, = 0.031) 
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Townsend goes on to suggest that ‘the inactive motion is a meandering or swirling 
motion made up from attached eddies of large size which contribute to the 
Reynolds stress much farther from the wall than the points of observation’ (but 
not at the point of observation). 

Figures 3 (a)  to 3 ( d )  show frequency spectra of u2, v2, w2 (where (u, v, w) are the 
components of the velocity fluctuation in the (x, y,z) directions) and ;EiV in the 
inner layers of boundary layers with U, cc xu, for a = 0 and a = - 0.255 (see 
figures 1 and 2). The measurements were made in the course of an investigation of 
‘equilibrium ’ (self-preserving) boundary layers. Full details of the investigation 
and of the experimental arrangements are given by Bradshaw ( 1 9 6 7 ~ ) .  Casual 
readers can treat the present paper as self-contained, and indeed the only rele- 
vance of the fact that these are equilibrium boundary layers is that the differences 
in x-position (shown in the figures for the sake of consistency with Bradshaw 
( 1 9 6 7 ~ ) )  can be ignored in the present discussion. The boundary layers with 
a = 0 and a = -0.255 have weak and strong ‘inactive’ motion respectively. 
The spectrum results show the scatter inevitable with hot-wire measurements, 
but it is clear that to a fair approximation the UV spectra near the surface are 
similar at all wave-numbers not directly affected by viscosity, the 9 spectrum 
shows departures from similarity for wy/ U - k, y < 2 (where w is frequency, in 
rad./sec), and the 2 and 3 spectra are grossly dissimilar for k, y < 2 .  The low- 
wave-number parts of the 2 and 3 (but not the 7) spectra in the retarded 
boundary layer collapse quite well when made dimensionless with constant scales 
such as U, and 6. The motion at  the highest wave-numbers is directly affected by 
viscosity (e.g. figure 3 ( b )  a = 0, y/6 = 0.06), and is not expected to plot on the 
inner layer scales: the present measurements collapse well on the Kolmogorov 
local-isotropy variables (Bradshaw 1967a). The contribution of this range of 
wave-numbers to the shear stress is negligible, by definition, outside the viscous 
sublayer. Taking the lowest wave-number affected by viscosity to be 0.1 (e/v3)f 

and noting that E = (7/p)*/.Ky, (Townsend 1961; Bradshaw et al. 1967) we see that 
a t  ( 7 1 ~ ) :  y/v = 40 viscous effects extend down to Ic,  y = 2: this value of (7/p)o)Qy/v 
is usually quoted as that at which the Reynolds stress starts to decrease, and 
indeed figure 3 (d) implies that 6 will start to decrease appreciably once viscous 
effects extend down to k, y z 2 .  More detailed results for (r/p)$ y /v  < 40 are given 
by Clark (1966). 

If the shear-stress-producing motion in the inner layer is indeed universal, then 
it cannot be directly influenced by the ‘large eddies’ (Townsend 1956), which have 
scales typical of the outer layer. Also, the suggestion made by several workers 
that the fully turbulent flow is controlled by disturbances originating in the 
viscous sublayer is extremely difficult to reconcile with inner layer universal 
scaling, but probably the strongest argument against this suggestion is the 
empirical fact that von K&rm&n’s constant is the same for smooth and rough 
walls, although the viscous sublayer as such does not exist in the latter case. 

Another useful piece of information that can be deduced from figures 3 ( a )  to 
3 ( d )  is that inner layer universal scaling is valid even if 7/p varies considerably 
across the inner layer (see figure 2 ) :  this justifies its use in compressible flow 
(Bradshaw & Ferriss 1966) where p rather than 7 varies across the inner layer. 

- _ -  
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Since the non-universal component does not produce much shear stress or 
disturb the universality of the smaller-scale motion, it fits Townsend’s descrip- 
tion, above, and we shall now call it ‘inactive’. That it does not interact with the 
smaller-scale motion follows from the large difference in scales; but its failure to 
contribute to the shear stress in the inner layer cannot be explained in the same 
way, because the large-scale motion in the outer region certainly produces shear 
stress. The explanation is partly that the v component of any sort of large-scale 
motion is small at  distances from the wall small compared with a longitudinal 
wavelength, as follows from the continuity equation: however, the uv spectra 
are much more nearly universal at low frequencies than the v spectra, so that for 
a full explanation we must identify the source of the inactive motion. 

It is not possible to isolate the inactive motion, but presumably its spectral 
density is at  least as large as the difference between the spectra in the retarded 
boundary layer and in the constant-pressure boundary layer, and its intensity a t  
least as large as the difference in intensity in the two boundary layers for a given 
value of shear stress. One obvious source is the pressure fluctuations generated 
by the turbulence in the outer layer, and on the strength of the pressure-velocity 
correlations (figure 7 (a) )  we may attribute at least (0.3)2 N 0.1 of the u-component 
mean-square intensity near the wall in the retarded boundary layer to this cause : 
however, a comparison of the intensity measurements in this boundary layer 
(Bradshaw 1967c) with Klebanoff’s (1955) measurements in zero gradient indi- 
cate that this is only 0.2-0-3 of the intensity of the ‘inactive’ component. The 
rest of the ‘ inactive ’ motion is caused partly by incursions of fluid from the outer 
layer, which will be small because the v component of the inactive motion is small, 
and partly by the unsteady external stream seen by the inner layer: either 
phenomenon will produce a slow fluctuation of the (quasi-steady) universal inner 
layer flow which, it will be now shown, is not likely to show up in mean-flow 
measurements. For simplicity we assume that the shear-stress gradient is small, 
so that the velocity profile in the inner layer is logarithmic in the absence of 

u 1  
inactive motion, 

V 

Let us assume that the shear stress fluctuates slowly and sinusoidally in time, 
so that we can write 

7’ = T (  1 +a COS wt) ,  

where w is small compared to a typical frequency w, of the ‘active ’ motion. Now 
we can define short-term averages, denoted by T ‘ ,  U’, etc., by averaging over a 
time TI such that l /w, TI < l/o and also define the usual long-term averages, 
T ,  U ,  etc., by averaging over a time Tz B l/w. Assuming that LY is small, we get 

( ( ~ / p ) & ) ’  = ( T / ~ ) * ( I  + ~ o l c o s w t - ~ ~ ~ c o s z w t + o ( a 3 ) ) .  

Assuming that the logarithmic velocity profile holds for the short-term- 
average quantities U’ and T‘ (i.e. assuming quasi-steady flow) we find that the 
long-term-average velocity profile is 
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and also that the mean-square ‘inactive ’ velocity fluctuation is 

247 

If we assume, for example, that the root-mean-square ‘inactive ’ fluctuation is 
20% of the local mean velocity we find that the root-mean-square fluctuation in 
shear stress is 40% (a = 0.56) but the difference between the mean velocity and 
the mean velocity in a steady flow with the same average shear stress is only 
about 2% (taking U/u,  to be about 15). 

Therefore very large fluctuations can be imposed on the inner layer without 
noticeable effect on the mean quantities (for a similar conclusion based on experi- 
mental evidence, see Karlsson (1959)). In particular, large fluctuations of shear 
stress can occur, and it is only in the mean that we can call the large-scale motion 
‘inactive ’ in the simplest sense of Townsend’s hypothesis. 

3. The energy balance for the inactive motion 
Since the inactive motion is of large scale and does not contribute to the 

Reynolds shear stress it does not directly produce or dissipate any significant 
amount of turbulent energy. In  the quasi-steady oscillating inner layer, local 
production and dissipation are nominally equal, according to the crude analysis 
above, both being - 

If we take a = 0.56 as before, the dissipation is only 6% greater than in an ordin- 
ary inner layer with the same mean shear stress, which is barely noticeable. 
However, this equality does not extend into the viscous sublayer, where direct 
dissipation of quasi-mean flow energy into heat takes place, so that for this 
reason alone we may expect a flow of energy of the inactive motion towards the 
wall, equal to the additional rate of direct dissipation caused by the oscillations. 
This energy flux is carried by eddies with wave-numbers typical of the outer 
motion: the local production of turbulent energy takes place among eddies with 
wave-numbers typical of the ‘active’ inner motion and cannot supply energy for 
direct dissipation of quasi-mean flow energy. The rate of direct dissipation is 
u(8U/8y)2 and the integral of this is 

(7’1P)%/Q or (1 + &“Ba2)(’i/P)W9. 

Using the implicit empirical formula for the inner layer suggested by Burton 

u,y/u = u/u, + ( U/8*74UT)’, 

where u, = (7/p)4, the total extra rate of direct dissipation is 1.7a2(?/p)8 or 
0-54(7/p)# with the same value of a as above. To supply this energy by diffusion, 
we expect that j%/p + && will tend to the value - 0.54 (?/p)* in the inner layer 
and go sharply to zero at the wall. In fact && is about - 1-0 (T/p)$, or rather less, 
in the inner layer of the retarded boundary layer with a = - 0.255, compared 
with about + 0.1 (T/p)* (zero to the likely accuracy of the measurements) in the 
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constant-pressure boundary layer (figures 4 (a) and 4 (b ) ) ,  which certainly implies 
extra dissipation, concentrated very near the wall and not merely distributed 
over the inner layer, and qualitatively supports the crude analysis for the oscil- 
lating inner layer. 
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FIGURE 4. Components o f F v  at x: = 83 in. (a)  zero pressure gradient, ( b )  77, cc x-0.255. - - - 
a = -0.255. 0, u2v; 0, v3; A, vw2. 

Townsend (1961) argued from considerations of inner-layer universality that 
(pV/p + &&)/(T/p)% should take a universal constant value near the wall: clearly 
we must regard this as the value for the active motion only, and it seems very un- 
likely that it is as large numerically as -0.3 (deduced by Townsend from the 
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Pitot profiles of Stratford (1959) in a continuously separating, and therefore 
highly turbulent, boundary layer), since such a ‘universal ’ value can hardly be 
reconciled with the direct measurements of 6 in zero pressure gradient where 
the inactive motion is not very strong. Reynolds’s (1965) estimates, varying from 
about - 2  to - 3  for different types of shear flow, were obtained by a process 
amounting to triple differentiation of mean velocity profiles, which seems to be 
placing undue confidence in the behaviour of Pitot tubes in turbulent flow. The 
hot-wire measurements themselves are rather difficult and not very reliable since 
the response, even of linearized hot wires, in highly turbulent flows is suspect; 
for instance, it is plausible that most of the extra energy lost directly to heat at  
the wall should be supplied by u% but according to the measurements v> is 
larger. It should be noted that no confidence can be placed in previous published 
measurements of triple products made with unlinearized wires. 

Apart from the effects of the extra dissipation in the viscous sublayer we expect 
the energy balance for the inactive motion to reduce to ‘advection = diffusion’, 
or 

where it is understood that the symbols refer to the ‘inactive’ contribution only. 
It is qualitatively clear that much of the difference between the measurements of 
42“ in the two boundary layers (and of course all of the difference in the inner 
layer) can be attributed to the ‘inactive ’ motion, and the same is probably true 
of the unmeasured jiz. 

The energy of the ‘inactive’ motion near the surface and near the outer edge 
is diffused from the active motion in the high-intensity region of the layer, and 
this loss of energy of the active motion must be taken account of in the energy 
balance for the active motion. The extra direct dissipation in the viscous sublayer 
of the boundary layer with U, K ~ - 0 ~ ~ ~  is only about 1 % of the total production 
in the high-intensity part of the layer and the advection near the wall is also small 
so that the chief sink of energy in the inactive motion is the advection near the 
outer edge of the flow. 

+( ua@/ax + ‘v@/ay) = - (a/ay)(pv/p + +a%), 

4. Surface pressure fluctuations in the strongly retarded boundary layer 
(a)  T h e  convection velocity 

In  boundary layers or jets the turbulent intensity in the region where most of the 
pressure fluctuations are generated is high enough for the velocity-fluctuation 
intensity to be spread over an appreciable band of phase velocities u / k ,  at a given 
wave-number Ic,, so that it is not possible to assign a single value to the convec- 
tion velocity even at a given distance from the surface. Since the surface pressure 
fluctuation is obtained as an integral over the whole thickness of the boundary 
layer, it is spread over an even wider band of phase velocities, and the centroid 
of this band is a rapidly varying function of wave-number. Wills (1967) has 
pointed out the advantages of presenting results in the (k,, w/lc,) or (k,, w)-planes 
rather than the (r,, .r)-plane (‘space-time correlations ’) and has deduced the 
(k,, u/Ic,) spectrum of surface pressure fluctuations in zero pressure gradient by 
taking the one-dimensional Fourier transform of frequency-filtered space correla- 
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tions. We have made similar measurements in the retarded equilibrium boundary 
layer, with U, cc x-0255, which are shown in figure 5. They have been normalized 
so that the integral over all wave-numbers at any given frequency is equal to the 
dimensionless frequency spectral density measured with a &in. (0.32 em.) dia- 
meter transducer (figure 6) : the smaller hot-wire-orifice transducer (Wills 1965) 

FIGURE 5. Spectral density of surface pressure fluctuations : contours in phase-velocity/ 
wave-number plane at  x: = 48 in. U ,  cc K ~ ~ ~ ~ .  

used to measure the frequency-filtered space correlations does not have a flat 
frequency response and is less suitable for spectrum measurements. The values 
of spectral density attached to the contours become increasingly unreliable as 
the wave-number increases because of lack of spatial resolution of the i in .  
transducer. 

The intuitively obvious definition of the average convection velocity at a given 
wave-number is that given by the centroid of a cross-section:of figure 5 at constant 
wave-number, and is tabulated as gph in table 1: this is generally a little lower 
than the phase velocity at which the spectral density is a maximum (this latter 
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is the definition used by Wills, and is closely related to the velocity of the frame 
of reference in which time derivatives are a minimum, which is the appropriate 
definition in problems of wave generation). The convection velocity so defined is 
everywhere significantly less than in zero pressure gradient, and the overall con- 
vection velocity integrated over all wave-numbers is 0.65U1 compared with the 
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FIUURE 6. Frequency spectrum of surface pressure fluctuation at  z = 48 in. U ,  cc z-@255. 

~~ ~ 

k,6, 0-4 0-5 0.6 0.8 1.0 2.0 5.0 10.0 

flpph/U1 0.662 0.679 0.695 0.705 0.658 0.540 0.451 0.422 

k,y, 0.54 0.71 0-98 1.33 1.38 1.17 0.79 0.97 

c /U1  0-16 0-15 0.16 0-17 0-17 0.14 0.16 0.13 

TABLE 1. Convection velocity of surface pressure fluctuations in the strongly 
retarded boundary layer 

generally accepted value of about O*SU1 in zero pressure gradient. It is quali- 
tatively obvious that most of the turbulent energy in the retarded boundary 
layer resides in the part of the layer where the mean velocity of the fluid is 0.6- 
0.7U1, but the high-wave-number contribution from the motion in the inner layer 
might, if adequately recorded by the pressure transducer, reduce the overall 



252 P. Bradshaw 

convection velocity considerably in both boundary layers (see $4 (d ) )  because the 
convection velocity decreases as the wave-number increases. If 7jk is the distance 
from the surface at which the mean velocity is equal to the convection velocity 
for a given wave-number k,, then klVk M 1 for k16, 3 1 (values of j j k  given by 
Bradshaw (1965) are incorrect). For k,6, < 1, j j k  becomes more nearly constant: 
it is then in the region of maximum turbulent intensity. A constant value of 
k,& would be expected if the surface pressure fluctuations were generated by a 
‘universal ’ turbulent motion whose spectra scaled on the dimensionless wave- 
number k, y and whose convection velocity was nearly equal to the mean velocity 
at height y (see $4(c)), so it appears that the pressure fluctuations at wave- 
numbers above k,6, = 1, are indeed generated by the ‘universal’ part of the 
inner layer turbulence. Wills’s results in zero pressure gradient show that the 
convection velocity falls only to 0-58U1 at the transducer cut-off wave-number, 
defined as k,d = 27~. kgk is roughly 1 again but it very ill-defined because U varies 
only slowly (logarithmically) with y. Some further properties of the inner-layer 
contribution to the surface pressure fluctuation are discussed in $4 (d) .  

The low-wave-number pressure fluctuations are generated outside the inner 
layer, at  y/S > 0.2 say. It is this latter part of the pressure-fluctuation field 
comprising virtually all the spectral density a t  low wave-number or low frequency, 
that contributes to the ‘inactive’ motion in the inner layer. At the lowest wave- 
numbers, at  and below the point of maximum spectral density, the convection 
velocity q ( k l )  decreases slightly but significantly (the same trend is shown by all 
four elements of the correlations, in-phase and quadrature, upstream and down- 
stream). It seems likely that streamwise inhomogeneity of the boundary layer is 
in some way responsible. k,6, = 0-3 implies h = 2 0 4 2 :  56: 6 increases by about 
25 yo in this distance but Wills’s (1967) results indicate a similar trend in the 
boundary layer in zero pressure gradient where dd/dx is less by a factor of four 
and dU,/dx is of course zero. Whatever the explanation, the effect is certainly 
real as far as the application of the results to structural excitation is concerned. 

The standard deviation CT of the spectral density, at constant wave-number, 
about the mean oph does not vary greatly with wave-number. The standard 
deviation is not the same thing as the r.m.s. u-component fluctuation of the 
turbulence that produces the pressure fluctuations, but it is certainly of the same 
order of magnitude, and is less in the constant-pressure boundary layer than in 
the strongly retarded boundary layer by roughly the same factor as the r.m.s. 
turbulent intensity. The higher moments of the spectral density about the mean 
cannot be accurately determined from the experimental results, but it appears 
that the spectral density curves at constant wave-number are just significantly 
more peaked (higher kurtosis) than a Gaussian distribution a t  the highest and 
lowest wave-numbers. 

( b )  The pressure-velocity correlations 
Wooldridge & Willmarth (1962) have measured correlations between the sur- 
face pressure fluctuation p,and the u and v-component fluctuations with various 
separations in space and time. From these we have extracted the correlations 
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with separation in the y direction only, which are plotted in figure 7 1 the correla- 
tion coefficients are always less than 0.1. The remarkable strength of the irrota- 
tional field in the retarded boundary layer with U, a x-0255 is shown most clearly 
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( b )  

FIGURE 7. Coefficient of correlation between the velocity fluctuation at height y and the 
pressure fluctuation a t  the surface. (a )  zc-component, ( b )  v-component. 0 ,  zero pressure 
gradient (Wooldridge & Willmarth 1962) ; 0, U ,  a z-0.255, z = 48 in. 

by comparing measurements in this boundary layer with Wooldridge & Will- 
marth's results. Crudely speaking, a third of the u-component velocity ffuctua- 
tion near the wall is correlated with the surface pressure fluctuation. The correla- 
tion decreases in magnitude at  larger distances from the wall; the reason is not 
that the length scale of the pressure fluctuation is very small, but that most of the 
pressure fluctuation is generated in the region of maximum turbulent intensity 
near y/S, = 2 ,  where it is more nearly in phase with au/ax than u: the correlation 
therefore passes through zero in this region. 
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The p> correlation for small y separation, measured in narrow frequency 
bands, is shown in figure 8 (a). As might be expected, the correlation coefficient 
rises to very high values a t  the lowest frequencies. There is a ‘plateau’ level of 
0.2-0.25 in the medium-frequency range corresponding to the part of the pressure 
fluctuation that is generated in the inner layer. The filtered p> correlation near 
the surface (figure 8(b) )  is almost entirely confined to the very low frequencies: 
the maximum numerical value reached a t  the lowest frequencies is only about 
0.15, so that the v-component fluctuation in the inner layer is much less affected 
by the pressure fluctuations than the u-component. This is a consequence of the 
continuity equation if the distance from the surface is small compared with 
typical wavelengths of the pressure fluctuations. 

(c) Convection velocity of the ‘universal’ inner layer motion 
Since ( ~ / p ) *  is the only velocity scale of the inner layer turbulence, the convection 
velocity must be U i- c(T/~)* where c is a constant depending on the precise 
definition of convection velocity. The simplest such definition is the energy-flux 
velocity (U  + u) q2/F, where q2 = u2 + v2 + w2, which combines advection of the 
turbulent kinetic energy 4pq2 by the mean velocity field with transport of turbu- 
lent energy by the turbulent fluctuations themselves. We have not measured all 
three components of 6 but measurements of 2 by Bradshaw ( 1 9 6 7 ~ )  indicate 
that u3/u2 N 0*5(~/p)b both in zero pressure gradient and with U, cc x - O . Z ~ ~ ,  and 
q2u/q2 will be of the same order. Thus U, 2: 0 + 0 - 5 ( ~ / p ) * ,  which is negligibly 
different from U for the purposes of the present paper. That U, > U although 
PUlay2 < 0 can be explained by the larger region of influence of eddies further 
from the wall. 

- 

- -  
_ -  

(a) Contribution of the ‘universal’ inner layer motion to the surface pressure 
jiuctuation 

In 5 4 (a) the variation of oph with k, was shown to be consistent with a ‘universal ’ 
forcing function for the surface pressure fluctuation for k, S, > 1 (or k, S,,, > 4 
say) in the strongly retarded equilibrium boundary layer: the chief contributions 
at  wave-number k, came from a distance roughly 1/k, above the surface. 

Taking T = constant = T ,  for simplicity, we see that the spectral density of 
the surface pressure fluctuations due to the universal inner layer turbulence must 
be a universal function of T and k, only, providing that the distance l/k, is large 
compared with the thickness of the sublayer, 12v/u,, but small compared with 
the thickness of the inner layer Si = 0.2 6: in Wooldridge & Willmarth’s (1962) 
boundary layer uT S/v was about 18 000 giving a ratio of 300 : 1 between the two 
thicknesses. This argument is very similar to Kolmogorov’s argument (Batchelor 
1953) that the spectrum of turbulence in the locally isotropic range depends only 
on the dissipation rate and the wave-number because no other length scale enters 
the problem. In  the present case, dimensional arguments, or the substitution of 
‘universal ’ variables in the Poisson equation, show that the one-dimensional 
spectral density is proportional to ~ t / k ,  in the ‘universal’ range, whose centroid 
is somewhere near the geometric mean k, = (u,/12vSi)* or k,S, = 10 in Wool- 
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dridge & Willmarth's experiment. The two-dimensional spectrum is proportional 
to ( ~ : / k : ) f ( k ~ / k J .  Dimensional arguments also show that the surface pressure cor- 
relation should be constant at  separations typical of the inner layer scales but as 

01 

0 - 
3 
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2 

- 0 1  

d 

11 

FIGURE 8. Coefficient of correlation between velocity fluctuation and surface pressure 
fluctuation in one-third octave frequency bands. 77, cc z-o.266, z = 48 in. (a) u-component, 
y/S,,, = 0.037; (b )  v-component, y/S,,, = 0.064. 

the correlation is the Fourier transform of the spectrum, which is an integral over 
all wave-numbers, the correlation behaviour will also depend on the behaviour of 
the spectrum at the ends of the k-l range, unless the k-1 range contains nearly all 
the energy: the same applies to the Kolmogorov analysis for isotropic turbulence 
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(Webb 1964). The total energy in the k-1 range is 7; (log(u,S,/v) +constant) so 
that according to the present analysis 317; should vary appreciably with 
Reynolds number. 

These predictions for the surface pressure fluctuation seem to follow quite un- 
ambiguously from the hypothesis of ‘universal ’ scaling of the inner layer motion, 
which is adequately confirmed by the results discussed in $2, but until recently 
the only direct experimental confirmation that the high-wave-number part of 
the surface pressure fluctuation is generated by the ‘universal’ inner layer 
motion was the behaviour of Up, mentioned above. All published spectrum 
measurements showed a very rapid fall in spectral density in the region where a 
k-l variation would be expected: figure 6 is typical. Recently, Hodgson (1967) 
has measured frequency spectra of surface pressure fluctuations using a probe 
microphone with an orifice of only 0-013in. diameter. The spectra were found to 
vary roughly as w-0.7 up to wS,/U, N 10 (say wS,/V, = k,S, N 15). The index is 
expected to be less than unity because the convection velocity decreases as wave- 
number increases. Assuming ky, = constant and noting that U cc yi approxi- 
mately over the inner part of the boundary layer (being exact where U/u7 = 15 
if K = 0.4), we expect # ( w )  cc 0-%. In  view of the difficulty of measuring exact 
slopes, Hodgson’s spectra strongly support the arguments leading to a k-l 
spectrum. Moreover, the upper end of the power-law region corresponds to 
uTyk/v 1: 40 which is where the mean velocity profile first deviates from the 
logarithmic law-that is, where the shear-producing, energy-containing eddies 
are f i s t  affected by viscosity. The large differences between Hodgson’s results 
and previous measurements can be attributed to the inadequate spatial resolu- 
tion of the transducers used by other workers. Corcos (1963, 1964) has derived 
correction formulae for spatial resolution, and his published correction of Will- 
marth’s spectrum has a well-defined region of w-l variation in the range 
1 < wS,/Ul < 10 (say 1.5 < kS, < 15), the transducer diameter being 0.38,. If 
Willmarth & ROOS’S (1965) correction is used instead, the region of 0-l variation 
ends at  wS,/U, N 5, but in either case the increase in the mean-square intensity is 
considerable. Corcos’s deduction from Willmarth & ROOS’S results that the con- 
tribution of the mean shear/turbulence term to the surface pressure is small for 
u, y/v < 100 is also likely to be affected by inadequate resolution, for which no 
correction was made in this case: the transducer diameter was about 600v/uT. 

Inner-layer universal scading may be of help in deriving correction formulae 
for transducer resolution (Poxwell 1966) although the spatial correlations do not 
have such a simple form as the corresponding wave-number spectra. The most 
general correlation is the filtered space correlation, r ( w ,  r) in Corcos’s (1964) 
notation, which is the double Fourier transform of the wave-number/frequency 
spectrum p f ( w ,  k,, k3).  Noting that the inclusion of frequency, as well as wave- 
number, as a variable requires us to include the convection velocity at  the given 
frequency also (and passing over the question of the precise definition of this 
convection velocity), we find (Bradshaw 1965) that 
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This Fourier transform is subject to the condition that the k-l range contains 
nearly all the energy a t  the value of w considered (a much less severe condition 
than the one mentioned above for the transform of p$(kl)) .  

Further, Corcos (1964) and others have found empirically that 

r(w Yl) # ( w ) f W 1 / u , )  
and r ( w ,  r.3) = $(@) f (Ur3 IU*  

‘Universal ’ scaling provides no information about the accuracy of Corcos’s 
assumption of the separability of variables, leading to 

F(w,  r) = #(w)A’(wr,/v,)B(wr,/v,). 

However, it does imply that Willmarth & ROOS’S (1965) objection to Corcos’s use 
of the more general form for r(w,r) at high w is not valid: Willmarth & Roos 
found experimentally that the attenuation of the pressure signal by the trans- 
ducer was not a unique function of wd/U,  (where d is the transducer diameter) as 
suggested by Corcos, but the universal scaling shows that it most certainly should 
be unique if the ‘ wave-number ’ w/U, is in the range in which the surface pressure 
fluctuation is dominated by contributions from the inner layer. Willmarth’s 
extrapolation of his results to zero transducer diameter is not necessarily con- 
vincing. Foxwell (1966) presents results which collapse well on wd/Ul. 

The practical conclusion to be drawn from this analysis, which is based on 
apparently unexceptionable deductions from the demonstration of universality 
of the active motion in the inner layer, is that the inaccuracies in pressure fluctua- 
tion measurements resulting from inadequate spatial resolution of the trans- 
ducers are even more serious than at  first appears. It does not necessarily follow 
that the unmeasurable part of the predicted spectrum is of any importance in 
determining structural excitation, because the wavelengths will be small com- 
pared with typical panel thickness. 

Most of the experimental work reported here was done by Mr M. G. Terrell. 
The Fourier transform program used in the data reduction was written by Mr 
D. H. Ferriss and run on the KDF 9 computer of Mathematics Division, NPL. 
The pressure transducers were made under the direction of Mr W. W. Smith. I 
am indebted to Dr T. H. Hodgson of the College of Aeronautics, and Dr J. A. B. 
Wills, for helpful discussions, and to Professor G. M. Lilley of Southampton 
University, and Dr G. E. Gadd, for comments on a first draft of this paper. 
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